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Psychedelics are abroad class of drugs defined by their ability toinduce an altered
state of consciousness'?. These drugs have been used for millennia in both spiritual
and medicinal contexts, and anumber of recent clinical successes have spurred a
renewed interest in developing psychedelic therapies®®. Nevertheless, a unifying
mechanism that can account for these shared phenomenological and therapeutic
properties remains unknown. Here we demonstrate in mice that the ability to reopen
the social reward learning critical period is ashared property across psychedelic
drugs. Notably, the time course of critical period reopening is proportional to the
duration of acute subjective effects reported in humans. Furthermore, the ability to
reinstate social reward learning in adulthood is paralleled by metaplastic restoration
of oxytocin-mediated long-term depression in the nucleus accumbens. Finally,
identification of differentially expressed genesin the ‘open state’ versus the ‘closed
state’ provides evidence that reorganization of the extracellular matrix isacommon
downstream mechanism underlying psychedelic drug-mediated critical period
reopening. Together these results haveimportant implications for theimplementation
of psychedelicsin clinical practice, as well as the design of novel compounds for the

treatment of neuropsychiatric disease.

Classically, psychedelics have been defined to include drugs such as
lysergic acid diethylamide (LSD), mescaline, phenylcyclohexyl piperi-
dine (PCP), ibogaine, 3,4-methylenedioxymethamphetamine (MDMA),
psylocibin and ketamine, because each of these compounds produces
alterations to sensory, self, time and space perception that are “so alien
toeveryday experience that they shed new light on the workings of these
everyday mental functions™. Although more recent attempts have been
made to subcategorize psychedelics'® on the basis of the subjective
character of the altered state that they induce (for example, halluci-
nogenic, empathogenic, oneirogenic or dissociative), their chemical
structure (forexample, tryptamines, phenethylamines or arylcyclohex-
amines), or their principal binding target (for example, serotonin recep-
tor 2A (5-HT,,R), monoamine transporter, k-opioid receptor (KOR) or
N-methyl-D-aspartate receptor (NMDAR)), theimportance of these cat-
egories for therapeutic applications remains unclear, since psychedelics
thatspanthe diversity of classification systems have shown remarkable
promise for the treatment of addiction*?, post-traumatic stress disor-
der®” (PTSD) and depression*®?. Thus, identification of acommon neuro-
biological mechanismthat can account for the shared therapeutic effects
of psychedelics is an obvious priority for translational neuroscience.
During specific periods of brain development, the nervous system
exhibits heightened sensitivity to ethologically relevant stimuli, as

well as increased malleability for synaptic, circuit and behavioural
modifications. These mechanistically constrained windows of time are
called critical periods and neuroscientists have long sought methods
toreopenthem for therapeutic benefit. Recently, we have discovered
anovel critical period for social reward learning and shown that the
empathogenic psychedelicMDMA is able to reopen this critical period™.
This mechanism shares a number of features with the therapeutic
effects of MDMA-assisted psychotherapy for the treatment of PTSD,
including rapid onset, durability and context dependence®’. At the
same time, cocaine does not reopen the social reward learning critical
period", and since cocaine does not share the psychedelics’ therapeu-
tic profile®?, these results lend further support for the view that the
reinstatement of social reward learning in adulthood underlies the
therapeutic efficacy of MDMA.

Whether the ability of MDMA to reopen the critical period for social
reward learning generalizes across psychedelics remains an open
question. MDMA is classified as an ‘empathogen’ because its acute
subjective effects are distinctly prosocial in quality™. The fact that this
quality is not shared by hallucinogenic psychedelics such as psilocybin
and LSD", dissociative psychedelics such as ketamine®, or oneirogenic
psychedelics such as ibogaine' challenges the idea that these drugs
could reopen the social reward learning critical period. However, the

"The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA. 2The Brain Science Institute, Johns Hopkins University, School of
Medicine, Baltimore, MD, USA. *Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA. “McKusick-Nathans
Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA. *The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine,
Baltimore, MD, USA. °The Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA. "The Center for Psychedelics and Consciousness Research, Johns
Hopkins University, School of Medicine, Baltimore, MD, USA. ®The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD,

USA. ®e-mail: gul@dolenlab.org

790 | Nature | Vol 618 | 22 June 2023


https://doi.org/10.1038/s41586-023-06204-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06204-3&domain=pdf
mailto:gul@dolenlab.org

Rx >P98
v 48h 30 min 24h 24h 30 min
| Home cage Pre-test Social conditioning Isolate conditiong
b Saline c Psilocybin d [l Saline [l Psilocybin e Rx
48 h prior 48 h prior
& §1450 & F1450 g 1751 —
£3 § £3 B2 1501 3% 121 +
2 900 2 900 S9 ) 8%
@ = @ S 1254 8 SN
St Ss ol 4 ER S
F g ss0l—m=— F g 3501 zg " £5 1.1
= Pre Post = S 0754 3 &
. T
5o
— ©1,050 - 81,050 @ d 53
%é NS gé v% 0501 ° °8 1.04 +
2 gootdo--o. - 2 900 g8 @ Saline
a o 8% 0254 g 8
o 2 o 2 59 Psilocybin
£g 750 £g 750 33 0"g—_‘ 0.9 o
172} Bra  Prot n - Q g T T T T T T T T T
- Pre  Post - Pre  Post 8 0251 © 21 35 49 63 77 91 105 119 133
Age (postnatal day)
f Saline 9 LsD h BWsaine@isp ! Rx
48 h prior 48 h prior
& 51,450 & S1450 g 1507 * +
= 0 pugly<) o € 1.2
§° = g ? 85 125 o : 2%
2 900 8 900 =2 e
o 2 = o 2 €5 ]
£ £s 5 1-°°"§'D 2E .,
S . [ 1 3 O 114
2 350 5 post & 35050 Post § 0754 ° %‘g
’ B e
@ E1,150 NS 5 81,150 * g 0304 x 338 +
£3 £3 B8 o15{ o i 101 _
8 om0 — . 8 900fd-"-l- 88 i @ saline
0 2 o & g8 1 @LsD
£ es0 £3 650 330154 0.9
1) - D - o . T T T T T T T T T
- Pre  Post - Pre  Post % _030] © 21 35 49 63 77 91 105 119 133
Age (postnatal day)
] Ketamine k Ibogaine ! [l Ketamine [ Ibogaine Rx
48 h prior 48 h prior NS
& £1.450 5 §1450 g B
= 0 =0 o & 1.901 1.2
g " 900 g% 900 58 g0 839
7 2 . 2 .
g5 g5 5= 1.30- 5%
E 9 1 E 9 B! Z5 g oE 1.1
8 38052 Post 8 380753 Post § 1.00-*—E-:L 59
_ _ N NS 89
% 81,175 & 21,175 8 s o8
238 * Zz38 o 2 060 28 L5l
g g9 e ! .
8 0001g-—"I- g 9004 --mooot §% @ Ketamine
e g e g 5o 0307 o @ Ibogaine
=5 = = [+] 2
F g 6254 = @ 6254 N g *_[: 094 T T T T r T —
- Pre  Post - Pre  Post g 04 _ B 21 35 49 63 77 91 105 119 133

Fig.1|Psychedelicsreopen thesocial reward learning critical period.
a,Experimental time course of i.p. pretreatment (Rx) insCPP.b,¢,f,g,j,k, Individual
(top) and average (bottom) responses of P98 mice indicate that mice pretreated
with psilocybin (0.3 mgkg™) (c; n =15, £y, =-3.741,P=0.002),LSD (1 pg kg™)
(g;n=9,ts=-7.095,P<0.001), ketamine 3 mg kg™) (j; n =18, t,,,=-3.826,
P<0.002),and ibogaine (40 mgkg™) (k; n =12, t,;,=-2.690, P=0.02) but not
saline (b; n=17 mice, ;5= —-0.441, P= 0.665.f; n=14 mice, t;; = -1.215,P=0.25)
develop a preference for the social bedding cue. Two-tailed paired t-test.

d,h,I, Comparisonsreveal asignificantincrease in normalized (top) and
subtracted (bottom) social preference for pretreatment with psilocybin versus
saline (d; normalized, ¢, = -2.800, P=0.009; subtracted, 3o, = —2.401,
P=0.023),and with LSD versus saline (h; normalized, ¢,;)=-3.558,P=0.002;
subtracted, t,;,=-3.344, P=0.003), but no difference between pretreatment
with ketamine and ibogaine (I; normalized, ¢,5)= 0.749, P= 0.460; subtracted,

psychotropic effects of MDMA include an altered state of conscious-
ness shared by all psychedelics'?, and if it is this characteristic rather
thanits prosocial properties that embodies the subjective experience
of reopeningcritical periods, then the ability to reinstate social reward
learning in adulthood might generalize across psychedelics.

Critical period reopening is ashared property

Totest whether the ability of MDMA to reopen the social reward learning
critical period generalizes across psychedelics, we began by examining
the effect of psilocybin pretreatment on the magnitude of social
reward learninginadulthood using the social reward conditioned place

Age (postnatal day)

tus)=0.409,P=0.686). Two-tailed unpaired t-test, with Welch’s correction to
account forunequal varianceinlsubtracted.*P < 0.05; NS, not significant
(P>0.05).e,i,m, Normalized social preference in mice pretreated with
psilocybin versussaline (e), LSD versus saline (i) and ibogaine versus ketamine
(m), plotted against anatural spline regression model of the developmental
time course of normalized social preference scores. Comparison with the
natural spline model revealed that the magnitude of sCPP in saline-treated
mice did notdeviate significantly from the closed state (b; P=0.72) (f; P=0.90),
whereas mice pretreated with psilocybin (P=1.12x107),LSD (P=1.76 x107%),
ketamine (P=8.78 x107*) or ibogaine (P=3.17 x 10~°) demonstrated a
significant meanshiftinrange of the open state. Comparisons with the natural
spline model were considered not significant (P> 0.1). Rxindicates drug
treatment. Dataareas mean +s.e.m.nrefersto the number of biologically
independent mice.

preference (sCPP) assay (Extended Data Fig.1). We administered asingle
intraperitoneal (i.p.) dose of psilocybin® (0.3 mg kg™) to adult male
mice (at postnatal day 96 (P96)) and 48 h later (at P98), we assessed
the magnitude of sCPP (Fig. 1a). Mice pretreated with psilocybin, but
not saline, exhibited a significant sCPP at P98 (Fig. 1b-d). To formally
designate ‘open’and ‘closed’ states of this critical period, we next gener-
ated a natural spline regression model to previously published data™
with knots at P35 and P98 (P=1.003 x 107%; root mean square error
(r.m.s.e.) = 0.19; R*=0.11), asshown in Extended Data Fig. 2. When com-
pared with this derived curve, the magnitude of sSCPP in saline-treated
mice did not deviate significantly from the closed state (P=0.72),
whereas the fit derived from psilocybin-treated mice demonstrated a
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Fig.2| The durationofthe openstateinduced by psychedelicsis variable.
a, Experimental time course of i.p. pretreatmentin the sCPP assay. b-q, sCPP in
adult mice1week after i.p. pretreatment with ketamine (3 mg kg™) or psilocybin
(0.3 mgkg™) (b-e), 2weeks after pretreatment with LSD (1 pg kg™) or psilocybin
(0.3 mgkg™) (f-i), 3 weeks after pretreatment with LSD (1 pg kg™) or psilocybin
(0.3mgkg™) (j-m) or 4 weeks after pretreatment with LSD (1 pg kg™) oribogaine
(40 mgkg™) (n-q).b,c,f.g,j,k,n,0,Individual (top) and average (bottom)
responsesindicate thereinstatement of SCPPis absent one week after
ketamine treatment (b, n =16 mice, ;5= 0.204, P= 0.841), lasts two weeks for
psilocybin (c,1week:n=17 mice, ¢, =-2.959,P=0.009; g, 2 weeks: n =22 mice,
ton=-3.542,P=0.002;k, 3 weeks: n =16 mice, ;5= —0.405,P=0.691), lasts 3
weeks for LSD (f, 2 weeks: n =18 mice, t;, = -4.360, P < 0.001;j, 3weeks: n=23
mice, £ =-3.671,P=0.001; n, 4 weeks: n =17 mice, ;= 0.441, P= 0.665), and
lasts atleast 4 weeks foribogaine (0, n =20 mice, t,5,=-3.004, P=0.007).
Two-tailed paired t-test.d,h,l,p, Comparisons reveal asignificant difference in
sCPPbetween ketamine and psilocybingroups1week after pretreatment

(d, normalized: ¢3,=-2.700, P= 0.011; subtracted: t3;,= -2.113, P= 0.043),
betweenLSD and psilocybin at 3 weeks (I, normalized: ¢, = 3.050, P= 0.004;
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subtracted: ¢;;)=2.471, P=0.018) but not at 2 weeks (h, normalized:
tas=0.390,P=0.699; subtracted: ;5 =1.077, P=0.288),and LSD and ibogaine
4 weeks after pretreatment (p, normalized: ¢35, = -2.045, P= 0.048; subtracted:
ts)=—2.283,P=0.029). Two-tailed unpaired t-test, with Welch’s correction to
account for unequal varianceinlsubtracted.*P< 0.05; NS, not significant
(P>0.05).e,i,m,q, Normalized social preference one week after ketamine or
psilocybin (e), two (i) and three (m) weeks after LSD and psilocybin, and four
weeks after LSD and ibogaine (q) plotted against a natural spline model of the
developmental time course of normalized social preference scores. The
magnitude of sSCPP did not deviate significantly from the closed state 1 week
after ketamine (e, P=0.949), three weeks after psilocybin (i, P= 0.633) and four
weeks after LSD (m, P=0.705), whereas the magnitude demonstrated a
significant mean shiftinrange of the openstate for both one (e, P= 0.054) and
twoweeks (i, P= 0.0211) after psilocybin, two (i, P= 0.0121) and three weeks

(m, P=0.00745) after LSD and four weeks after ibogaine (q, P= 0.0758).
Comparisons to the natural spline model were considered not significant
(P>0.1).Dataaremean ts.e.m.nrefersto the number of biologically
independent mice.
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Fig.3| The durations ofacute subjective effectsin humans are proportional
tothe durations of the critical period openstateinmice. a, Durations of the
acute subjective effects of psychedelicsinhumans (datafromrefs.15,16,20-22).
b, Durations of the critical period open state induced by psychedelics in mice.
Based onref.11and Figs.1and 2 and Extended Data Fig. 5.

significant mean shift (P=1.12 x 10~®) in range of the open state (Fig. 1e).
Similarly, pretreatment with LSDY (i.p. 1 ug kg™) but not saline, also
reopened the critical period for social reward learning (saline P= 0.90,
LSD P=1.76 x10°°) (Fig.1f-i). Next, we examined the effects of ketamine'®
(i.p.3 mg kg ) andibogaine® (i.p.40 mg kg™).Mice pretreated witheither
drugalso exhibitedsCPPinadulthood (P=8.78 x10™*and P=3.17 x10°7%,
respectively) (Fig. 1k-m). As with MDMAY, these effects were dose-
dependent (Extended DataFig. 3). Injuveniles, MDMA" (i.p.10 mg kg™)
pretreatment did notlead to afurtherincrease the magnitude of social
reward learning (Extended Data Fig. 3). In contrast to its effects on
social reward learning behaviour, pretreatment with psychedelics had
no effect on the magnitude of two addiction-like behaviours: cocaine
reward learning and amphetamine-induced locomotor sensitization
(Extended Data Fig. 4). Together, these studies demonstrate that as
with empathogenic psychedelics", hallucinogenic, oneirogenic and
dissociative psychedelics are able to reopen the critical period for
social reward learning.

Duration of the psychedelic open state

Theduration of acute subjective effects and the durability of the thera-
peutic response vary considerably across psychedelics. For example,
inhumans, the acute subjective effects of ketamine® last 30-120 min,
whereas its antidepressant effects® last for 1 week. By contrast, the
subjective effects of psilocybin and MDMA?*? |ast for 3-6 h, whereas

the acute effects of LSD and ibogaine persist for 8-10 hand 36-72 h,
respectively’®?; these long-lasting subjective effects correspond to
highly durable therapeutic effects that last months to years*>’. Previ-
ously, we showed that MDMA-induced critical period reopening lasts
for two weeks, but returns to the closed state by four weeks". Here, to
further probe the time course of the critical period open stateinduced
by psychedelics, we examined the duration of critical period reopen-
ing following treatment with ketamine, psilocybin, LSD and ibogaine
(Fig.2a). One week following psychedelic treatment, psilocybin-treated
mice, but not those treated with ketamine, exhibited significant social
reward learning (Fig. 2b-e). Two weeks following psychedelic treat-
ment, the social reward learning critical period remained open for both
psilocybin- and LSD-treated mice (Fig. 2f-i). At three weeks, LSD-treated
mice, but not those treated with psilocybin, exhibited significant social
reward learning (Fig. 2j-m), whereas at four weeks, the social reward
learning critical period remained open for mice treated with ibogaine
but not those treated with LSD (Fig. 2n—q). For each psychedelic,
we examined at least three time points; increasing the LSD dose to
50 pg kg™ did not extend the duration of the openstate (Extended Data
Fig.5). AsshowninFig. 3, the progressively longer-lasting open states
induced by ketamine (Figs. 1f-i and 2b-e and Extended Data Fig. 5),
followed by psilocybin (Fig. 2b-i), MDMA" (Extended Data Fig. 5), LSD
(Fig. 2j-q) and ibogaine (Fig. 2n-q and Extended Data Fig. 5) are pro-
portional to the duration of the acute subjective effects of these drugs
in humans®™'®?°22_ These results provide a mechanistic explanation
for theimportance of the post-treatment integration period for clini-
cal implementation of psychedelics, and inform the design of novel
compounds for clinical applications.

Metaplasticity, not hyperplasticity

Dynamic regulation of the extent to which synaptic plasticity can
be induced is called ‘metaplasticity?, and is thought to be one of
the mechanisms underlying the establishment of critical periods®.
Previously, we showed that oxytocininduces a novel form of presynap-
tically expressed long-term depression, and implicated this plasticity
in encoding social reward learning®?, Here, to determine whether
the ability to induce metaplastic upregulation of oxytocin plasticity
generalizes across psychedelics, we pretreated adult mice with either
saline, cocaine or psychedelics. Forty-eight hours or two weeks later we
prepared ex vivo acute slices containing the nucleus accumbens (NAc)
and conducted whole-cell voltage-clamp recordings from medium
spiny neurons (MSNs) (Fig.4a-c). A10-min bath application of oxytocin
induced a significant decrease in the frequency (Fig. 4d-k) but not
the amplitude (Fig. 41-s) of miniature excitatory post-synaptic cur-
rents (mEPSCs) following pretreatment with MDMA, LSD, psilocybin,
ketamine and ibogaine, but not with saline or cocaine, at 48 h; this
metaplasticity persisted for 2 weeks in the LSD pretreatment group,
butnotintheketamine pretreatment groups. We did not observe sig-
nificant changes inbaseline mEPSC amplitude or frequency following
pretreatment with psychedelics in the NAc or in layer 5 of the medial
prefrontal cortex (mPFC) (Extended DataFig. 6). Together, these results
provide evidence that psychedelicsinduce metaplasticity rather than
hyperplasticity, a distinction that is especially important for design-
ingbiomarkersto test therapeutic profiles and abuse liability of novel
compounds.

5-HT,,Ris not the universal mechanism

The serotonin receptor 5-HT,,R, first identified by its binding to
LSD?, mediates alterations of perception and cognition induced by
‘serotonergic psychedelics®such as LSD?® and psilocybin®. Further-
more, MDMA is thought to trigger synaptic efflux of serotonin through
itsbinding at the serotonin transporter SERT*, and some of the effects
of ketamine are reportedly mediated by 5-HT,,R*. Thus, we sought to
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Fig.4|Psychedelicsinduce metaplasticity. a,b, lllustration (a) and time
course (b) of treatment and electrophysiology protocol. Illustrationina
adapted fromref.25. c, Representative mEPSC tracesrecorded from MSNsin
the NAc of oxytocin-treated brainslices collected from mice pretreated with
saline (n=8),20 mg kg™ cocaine (n=6),10 mg kg MDMA (n=4),1 ug kg™ LSD
(n=4),3mg kg™ ketamine (n=4) or40 mg kg™ ibogaine (n =5).d-k, Average
frequency of mEPSCs (d) and cumulative probabilities of intereventintervals
for cocaine (e), MDMA (f), LSD (g), ketamine (h) and ibogaine (i) recorded from
MSNs after two days, and after two weeks (wk) for ketamine (j) and LSD (k). I-s,
Average (I) and cumulative probability distributions of amplitudes recorded
from MSNs for cocaine (m), MDMA (n), LSD (o), ketamine (p) and ibogaine (q)

determinetherole of 5-HT,,Rinreopening the social reward learning
critical period with LSD, psilocybin, MDMA and ketamine. We admin-
istered psychedelics intraperitoneally in P96 adult mice either alone
or in combination with ketanserin (HTR-A, 0.1 mg kg)—the 5-HT,,R
antagonist used in human studies—which we injected 30 min before
the psychedelic (Extended DataFig. 7). Pre-treatment with either LSD
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Amplitude (pA)

Amplitude (pA)

recorded from MSNs after two days, and after two weeks for ketamine (r) and
LSD (s). One-way analysis of variance revealed a significant effect of treatment
onfrequency (d, F;3;,=5.99,P=0.0002) but notamplitude (I, F; 3, =1.09,
P=0.39),and multiple comparison analysis revealed an oxytocin-mediated
decreasein mEPSC frequency after pretreatment with psychedelics (f, MDMA:
P=0.011;g,LSD: P=0.0013; h, ketamine: P=0.001; i, ibogaine: P= 0.013), but
not cocaine (P=0.83), and that this decrease remained significant at the
two-week time point with LSD (k, n =4, P=0.01) but not ketamine (j,n=4,
P=0.99).Allcellshavebeenrecordedinslices of adult mice at P98. Dataare
mean ts.e.m.*P<0.05; NS, notsignificant (P> 0.05). nrefers to the number of
biologicallyindependentcells.

or psilocybininduced reinstatement of SCPP measured 48 hlater, and
this effect was blocked by co-administration of ketanserin (Extended
Data Fig. 7). However, MDMA-induced reinstatement of sCPP
persistedin the presence of ketanserin (Extended DataFig.7). Similarly,
co-administration of ketanserin did not block ketamine-induced rein-
statement of social reward learningin adulthood (Extended DataFig. 7).
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Fig. 5| Characteristic changesintranscriptioninduced by psychedelics.
a,Heat map of normalized RNA expression values from the microdissected
NAc for genes that are significantly differentially expressed in conditions
where the critical period remainsin the open state versus conditions where the
critical period remainsinor returnstothe closed state. LRT, likelihood ratio

These results demonstrate that whereas 5-HT,,Rs are required for
LSD-and psilocybin-induced reopening of the social reward learning
critical period (with potential contributions from serotonin 2B and 2C
receptors, since ketanserin also has affinity at these serotoninreceptor
2 subtypes), MDMA and ketamine reinstate social reward learningin
a5-HT,,R-independent manner. Although some have argued'** that
psychedelics that bind 5-HT,,R (such as LSD and psilocybin) should
be classified separately from those that do not (such as MDMA and
ketamine), these results identify a novel property (critical period
reopening) that coheres the category of psychedelics but violates
the 5-HT,,R-binding boundary. Thus, combined with the data pre-
sentedin Figs.1and 2, these results support the continued use of the
established naming convention for psychedelics?, rather than sub-
classification or renaming based on receptor binding or subjective
properties.

B-arrestin-2 is not the universal mechanism

Recent studies indicate that prolonged binding at the 5-HT,,R by
LSD triggers B-arrestin-2 (-arr2)-biased signalling over canonical
G-proteinsignalling®. Moreover, the effects of MDMA" and ibogaine®*
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test; TPM, transcripts per million. b-i, Ratio of expression values to average
salinebaseline for top scoring genes related to extracellular matrix
remodelling: Fn1 (b), Mmpi6 (c), Trpv4(d), Cxcr4 (e), Tinagll (f), Adgre5 (g),
Robo4 (h) and Nostrin (i). Coca, cocaine; ket, ketamine; sal, saline.

arealso thought to be mediated by metabotropic G-protein-coupled
receptors (GPCRs). Although the therapeutic effects of ketamine
are thought to be mediated by ionotropic NMDA receptors®, the
metabotropic glutamate receptor 5 has also been implicated*®. To
test the hypothesis that 3-arr2-biased signalling mediates the ability
of psychedelics to reopen the social reward learning critical period,
we examined their effects in commercially available 3-arr2-knockout
(KO) mice. We began by determining baseline sCPP in juvenile and
adult B-arr2-KO mice and found that these mice exhibited the nor-
mal maturational profile of social reward learning (Extended Data
Fig. 8). Next, we compared the magnitude of sSCPPin adult (P98) B-arr2
wild-type and 3-arr2-KO mice 48 h following administration of psy-
chedelic drugs (Extended Data Fig. 9). LSD and MDMA reopened the
social reward learning critical period in wild-type mice but did not
dosoin B-arr2-KO mice (Extended Data Fig. 9). Conversely, ketamine
and ibogaine were able to reinstate social reward learning in both
wild-type and -arr2-KO mice (Extended Data Fig. 9). Together, these
results demonstrate that whereas -arr2 signalling is required for
LSD- or MDMA-induced reopening of the social reward learning criti-
cal period, ketamine or ibogaine reinstate social reward learningin a
B-arr2-independent manner.
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Psychedelics induce remodelling of the ECM

Since psychedelics as a class all reopen the social reward learning
critical period (Fig. 1) even though these drugs act on a diverse array
of principal binding targets (Extended Data Fig. 7) and biochemical
signalling pathways (Extended Data Fig. 9), we reasoned that the
common mechanism that enables critical period reopening might
be downstream of these cellular processes. Furthermore, given the
durability of the response (Fig. 2), we hypothesized that psychedelics
may modulate the expression of specific genes or pathways. To test
this hypothesis, we carried out RNA sequencing of the microdissected
NAc 48 h and 2 weeks after pretreatment with either saline, cocaine,
ketamine, LSD or MDMA. We collected total mRNA from each sample
and made strand-specificlibraries for each of three replicates from each
condition. Transcript-level abundances were collapsed to gene-level
expression estimates for model fitting.

Todirectly compare treatment-related transcriptional changes spe-
cific to the shared ability of psychedelics to reopen the social reward
learning critical period, we analysed the gene expression dataset
between conditions in which the critical period is in the open state
(48 hand 2 weeks after LSD treatment, 48 h after ketamine treatment,
and 48 h after MDMA treatment) versus conditions where the critical
periodremainsinorreturnstothe closed state (48 hand two weeks after
saline treatment, 48 h and two weeks after cocaine treatment, and two
weeks after ketamine treatment). Using this approach, we identified
65 genes that were significantly differentially expressed (likelihood
ratio test; Benjamini-Hochberg-corrected g < 0.1) (Fig. 5). Gene set
enrichment analysis of this list identified significant enrichment of
ontologies associated with endothelial development, regulation of
angiogenesis, vascular developmentand tissue morphogenesis. Of note,
many of the top scoring genes are components of the extracellular
matrix (ECM) or have been implicated in its remodelling, including:
Fnl(ref.37), Mmpl6(ref. 38), Trpv4(ref.39), Tinagl1(ref. 40), Nostrin*,
Cxcr4(ref.42), Adgre5(ref.43), Robo4(ref.44) and Sema3g™®. Additionally,
the differentially expressed gene set includes the immediate early
genes (IEGs) Fos, Junb, Arc and Dusp. When we did not control for the
psychedelic-specific psychoactive response (saline versus all drug
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conditions, including cocaine), we identified 39 differentially expressed
genes (Benjamini-Hochberg-corrected g < 0.15) (Extended Data Fig.10);
however, enrichment analysis identified no significant ontologies asso-
ciated withthisgene set, and only 6 genes (Hspal2b, Sema3g, Eng, Flt4,
Cavinl and Ube4b) overlapped with the differentially expressed genesin
the openstate versus closed state dataset shownin Fig. 5. These results
provide evidence that the shared ability of psychedelics to reopen
the social reward learning critical period converges at transcriptional
regulation of the ECM. On the basis of these findings, our working
model (Fig. 6) posits that psychedelics act at a diverse array of bind-
ing targets (such as SERT, 5-HT,,R, NMDA and KOR), to trigger adown-
stream signalling response that leads to activity-dependent (perhaps
via IEG-mediated coincidence detection) degradation of the ECM,
whichinturnisthe permissive event that enables metaplasticity. Inthis
model, transcriptional upregulation of ECM components (for example,
FN1) and downregulation of ECM proteolytic enzymes (for example,
MMP-16), reflects the homeostatic response to these long-lasting cel-
lular changes. Together, these results demonstrate novel biological
effects (behavioural, temporal, electrophysiological and molecular)
that—similar to therapeutic effects—are shared across psychedelics.

Conclusions

These studies provide anovel conceptual framework for understanding
the therapeutic effects of psychedelics, which have shown significant
promise for treating a wide range of neuropsychiatric diseases, includ-
ing depression, PTSD and addiction. Although other studies have shown
that psychedelics can attenuate depression-like behaviours®** 8 and
may also have anxiolytic*’, anti-inflammatory** and antinociceptive™
properties, it is unclear how these properties directly relate to the
durable and context dependent therapeutic effects of psychedelics** S,
Furthermore, although previous in vitro studies have suggested that
psychedelic effects might be mediated by their ability to induce
hyperplasticity®, this account does not distinguish psychedelics from
addictive drugs (such as cocaine, amphetamine, opioids, nicotine and
alcohol) whose capacity toinduce robust, bidirectional, morphological
and physiological hyperplasticity is thought to underlie their addic-
tive properties'. Moreover, our ex vivo results (Fig. 4 and Extended
DataFig. 6) are consistent within vivo studies, whichdemonstrate that
dendritic spine formation following administration of psychedelics
is both sparse and context dependent*>>*, suggesting a metaplastic
rather than a hyperplastic mechanism. Indeed, previous studies have
also directly implicated metaplasticity in the mechanism of action of
ketamine® ¥, At the same time, since our results show that psychedelics
donotdirectly modify addiction-like behaviours (Extended Data Fig. 4
andref.11), they provide a mechanistic clue that critical period reopen-
ing may be the neural substrate underlying the ability of psychedelics
toinduce psychological flexibility and cognitive reappraisal, properties
that have been linked to their therapeutic efficacy in the treatment of
addiction, anxiety and depression®®°,

Although the current studies have focused on the critical period for
social reward learning, critical periods have also been described for a
wide variety of other behaviours, includingimprinting in snow geese,
song learningin finches, language learning in humans, as well as brain
circuit rearrangements following sensory or motor perturbations, such
as ocular dominance plasticity and post-stroke motor learning® .
Since the ability of psychedelics to reopen the social reward learning
critical periodisindependent of the prosocial character of their acute
subjective effects (Fig. 1), it is tempting to speculate that the altered
state of consciousness shared by all psychedelics reflects the subjective
experience of reopeningcritical periods. Consistent with this view, the
time course of acute subjective effects of psychedelics parallels the
duration of the open state induced across compounds (Figs. 2 and 3).
Furthermore, since our results point to a shared molecular mecha-
nism (metaplasticity and regulation of the ECM) (Figs. 4-6) that has



alsobeenimplicated in the regulation of other critical periods>64¢¢,
these results suggest that psychedelics could serve as a‘master key’ for
unlocking a broad range of critical periods. Indeed, recent evidence
suggests that repeated application of ketamine is able to reopen the
critical period for ocular dominance plasticity by targeting the ECM"8,
This framework expands the scope of disorders (including autism,
stroke, deafness and blindness) that might benefit from treatment
with psychedelics; examining this possibility is an obvious priority
for future studies.
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Methods

Mice

Male wild-type mice were bred in house and weaned at 3 weeks or
obtained from Jackson Laboratories (stock no. 000664). 3-arr2-KO
mice (stock no. 011130) were obtained from Jackson Laboratories,
bred in house and weaned at 3 weeks of age. All mice were inbred to
the C57BL/6) congenic ‘wild-type’ strain (as opposed to outbred ‘true
wilds’, which were not used in this study). Congenic strains are gener-
ated by backcrossing for aminimum of 10 generations, astandard that
isderived fromthe congenicinterval, and the theoretical estimate that
by thel0thgeneration, 99.99% of the congenic strain background will
be from the recipientinbred®. Although the B-arr2-KO mouse (Jackson
Laboratories stock no. 011130), was originally derived on the 129X1/SvJ
background™, it was backcrossed to the C57BL/6) congenic strain at
Jackson Laboratories (https://www.jax.org/strain/011130). All mice
were maintained onal2 h:12 hnatural light:dark cycle, starting at 07:30
with food and water provided ad libitum. Allbehavioural experiments
were conducted during the same circadian period (07:30-19:30) ina
dedicated, sound- and odour-controlled behavioural testing room,
whichis separated from the vivarium, and no other experiments were
conducted simultaneously in the same room. Sample size was esti-
mated based on previous work and published literature. Experiment-
ers were blind to the condition when subjective criteria were used as
a component of data analysis, and control and test conditions were
interleaved. Mice were randomly assigned to experimental and control
groups. All procedures complied with the animal care standards set
forth by the National Institutes of Health and were in accordance with
protocols approved by the Johns Hopkins University Animal Care and
Use Committee.

SsCPP assay

The protocol for sCPP was adapted from previously published work™.
Mice were socially housed (3-5 males) in a cage containing corncob
bedding (Anderson Cob, 0.25 inch cob, Animal Specialties and Provi-
sions) until the pre-determined age for sCPP testing. Each mouse was
used for only one behavioural time point. At the pre-determined age,
mice were placed in an open field activity chamber (ENV-510, Med
Associates) equipped with infrared beams and a software interface
(Activity Monitor, Med Associates) to monitor the position of the
mouse. The apparatus was partitioned into two equally sized zones
using a clear Plexiglas wall, with a 5 cm diameter circular hole at the
base; each zone contained one type of novel bedding (Alpha-Dri,
Animal Specialties and Provisions or Kaytee Soft Granule, Petco).
The amount of time spent freely exploring each zone was recorded
during 30-min test sessions. For example, a score of 900 means that
the mouse spent exactly 50% of its time on each of the two beddings,
whereas a score 0f 1,800 means that it spent the full 30 min in the
bedding that would be subsequently assigned as the social condi-
tioning cue, and no time in the bedding that would be assigned as
theisolation conditioning cue. After aninitial pre-conditioning trial
to establish baseline preference for the two sets of bedding cues,
mice were assigned to receive social conditioning (with cage mates)
for 24 h on one type of bedding, followed by 24 h of isolation condi-
tioning (without cage mates) on the other bedding cue. To assure
unbiased design, chamber assignments were counterbalanced for
side and bedding cues. Immediately after the isolation condition-
ing, a 30-min post-conditioning trial was conducted to establish
preference for the two conditioned cues. CPP is a learned associa-
tion between a condition (for example, social) and a cue (bedding).
It does not require scent from the other mice, as the bedding itself
serves as the cue. Exclusion criteria for this behaviour are strictly
defined as a pre-conditioning preference score of >1.5 or <0.5. Mice
are never excluded based on the quality of their social interactions.
Pre-conditioning versus post-conditioning social preference scores

were considered significant if paired Student’s ¢-test P values were
less than 0.05. Comparisons between experimental conditions were
made using both normalized social preference scores (time spent in
social zone post-treatment divided by pre-treatment) and subtracted
social preference scores (time spent in social zone post minus pre);
these were considered significant if unpaired Student’s ¢-test Pvalues
were <0.05. All experiments were performed during the mouse rest
period (light cycle), since pilot experiments revealed that SCPP is most
robustifassayed duringthis period. Prior toi.p. drug treatment experi-
ments (MDMA, LSD, psilocybin, ketamine or ibogaine hydrochloride),
mice were habituated to the injection procedure with daily saline i.p.
injectionsinthe home cage. Pharmacological delivery schedules were
counterbalanced for type of drug. Unless otherwise stated (Fig. 2
and Extended Data Fig. 5), for pretreatment, experiments mice were
tested 48 h after the injection to allow for complete clearance of the
drug. For the experiment testing involvement of the 5-HT,,R, the
5-HT,,R antagonist ketanserin was administered i.p. 30 min prior to
theinjection of the drug tested.

Electrophysiology

Subjects received ani.p. injection of either LSD (1 ug kg™), ketamine
B mgkg™), psilocybin (0.3 mg kg™), MDMA (10 mg kg™), ibogaine
(40 mg kg™ or saline. Forty-eight hours after drug treatment, either
parasagittal slices containing the NAc core (250 pm thick) or coronal
slices containing the PL/IL region of the mPFC (250 um thick) were
prepared from C57BL/6 mice using standard procedures. In brief, after
mice were anaesthetized withisoflurane and decapitated, brains were
quickly removed and placed inice-cold low-sodium, high-sucrose dis-
secting solution (228 mM sucrose, 26 mM NaHCO,, 11mMglucose, 2.5
mM KCI, 1 mM NaH,PO,, 1 mM MgSO,, 0.5 mM CacCl,). Slices were col-
lected witha Leica VT 1200s vibrating microtome. Slices were allowed
torecover for aminimum of 60 minin asubmerged holding chamber
(~25°C) containing artificial cerebrospinal fluid (ACSF) consisting of
119 mM Nacl, 2.5 mMKCl, 2.5 mM CacCl,, 1.3 mM MgCl,,1mM NaH,PO,,
11 mM glucose and 26.2 mM NaHCO;. For hyperplasticity recordings
(Extended DataFig. 6), slices were removed from the holding chamber
and placedinto therecording chamber, where they were continuously
perfused with oxygenated (95% O,, 5% CO,) ACSF at 2 ml minat 25 °C.
For metaplasticity recordings (Fig. 4), slices were removed from the
holding chamber and incubated first for 10 min in oxygenated ACSF
containing picrotoxin (50 pM, Sigma), followed by 10-minincubation
in oxygenated ACSF containing both picrotoxin and oxytocin (1 uM,
Tocris) before being placed into the recording chamber. Whole-cell
voltage-clamp recordings from MSNs or layer V pyramidal cells were
obtained under visual control using a40x objective. The NAc core was
identified by the presence of the anterior commissure, and the PL/IL
region of the mPFC was identified by the presence of the forceps
minor of the corpus callosum. Recordings were made with electrodes
(2.5-4.0 MQ) filled with 115 mM CsMeSO,, 20 mM CsCl, 10 mM HEPES,
0.6 mM EGTA, 2.5 mM MgCl, 10 mM sodium phosphocreatine, 4 mM
sodium ATP, 0.3 mM sodium GTP and 1 mM QX-314. Miniature EPSCs
were collected at a holding potential of -=70 mV in the presence of tet-
rodotoxin (0.5 uM, Tocris Biosciences) and picrotoxin (50 pM, Sigma).
Two minutes after break-in, 30-s blocks of events (total of 200 events
per cell) were acquired and analysed using the Recording Artist plugin
inlgor Pro software with threshold parameters set at 5 pA amplitude
and <3 msrise time. All events included in the final data analysis were
verified visually. Data were analysed by multivariate analysis of variance
(MANOVA) with threeindependent variables (drug, brain area and age)
and two dependent variables (frequency and amplitude). Likelihood
ratio test performed comparing the full model using treatment, age,
and structure toareduced model using age and structure. All calcula-
tionswere performed ineither GraphPad Prism 9 or the R programming
language and are available as Supplementary Codelandin the reposi-
tory at https://github.com/genesofeve/DolenPsychedelicOpenState.
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RNA extraction and sequencing

Male wild-type C57BL6/) mice were injected i.p. with LSD, ketamine,
cocaine (20 mg kg™) or saline solution either 2 weeks or 48 hbefore the
mice were euthanized. At P98 to P112, mice were euthanized, brains were
rapidly removed and -1Imm thick coronalslice (n = 3 mice per condition)
containing the nucleus accumbens were sectioned using amouse brain
matrix. To microdissect the NAc, slices were placed in a petri dish con-
tainingice-cold ACSF (125 mMNacl, 2.5 mMKCI,2mM CaCl,, 1mMMgCl,,
1.25mM NaH,PO,, 10 mM glucose and 26 mM NaHCO;) supplemented
withRNase inhibitor and oxygenated with carbogen gas (95% O, and 5%
CO,) to pH 7.3-7.4. The NAc was identified using the anterior commis-
sureand other structural markers. Between each dissection, blades were
replaced and all the instruments and the matrix were cleaned with a solu-
tion containing RNase inhibitor. Following dissection, tissue wasimme-
diately placedinto 0.5 ml Trizoland subjected toa15 sburst with atissue
homogenizer to lyse the cells. Samples were kept onice prior to storage
at—-20 °C. Total RNA were extracted using the RNeasy Kit from Qiagen.
The quality of purified RNA was assessed viaboth ananodrop and 2100
Bioanalyzer from Agilent. Library preparation was performed using a
TruSeq Stranded mRNA kit (Illumina) using the recommended proto-
col. Individual dual-indexed libraries were quality controlled, pooled,
and sequenced on the NovaSeq 6000 platform on a single S1 flowcell
to an average depth of 76,841,745 (+8,066,939.82) paired-end 100 bp
reads per sample. Reads were pseudoaligned to the mouse GENCODE
vM25 (ref. 71) reference transcriptome using kallisto (v0.46.2) with 100
bootstrapped samples and 6 threads. Defaults were used for all other
parameters. Estimated transcript-level abundances were collapsed to
gene-level expression estimates and analysed using the sleuth (v0.30.0)
R/Bioconductor package. Toidentify genes with differential expression
as a function of samples where the critical period is reopened we per-
formed alikelihood ratio test comparing a full model which included
batch, and critical period to areduced model that only included batch.
Timewasnotused as anexplanatory variablein this model fitting. Using
this test, we identified 65 genes as significantly differentially expressed
at a10% false discovery rate (Benjamini-Hochberg-corrected g < 0.1).
Toidentify genes with differential expression as afunction of any drug
treatment (including cocaine) versus saline we performed alikelihood
ratio test comparing a full model that included batch, and ‘treated vs
untreated’ toareduced model that only included batch. Using this test,
weidentified 39 genes as significantly differentially expressed ata15%
false discovery rate (Benjamini-Hochberg-corrected g < 0.15). Time was
not used as an explanatory variable in this model fitting. Raw data willbe
made publicly available (Gene Expression Omnibus accession numbers:
GSE230679 and GSM7231202-GSM7231228). Code to reproduce the
RNA-seq analysis and associated figures is provided as Supplemen-
tary Code 2 and in the repository at https://github.com/genesofeve/
DolenPsychedelicOpenState.

Statistics

All statistical details can be found in the figure legends, including
the type of statistical analysis used, P values, n, degrees of freedom,
tvaluesand fvalues. Sample sizes were not predetermined by statisti-
cal methods; instead they were estimated based on the previously
published literature. Data distributions were assumed to be normal.
Homogeneity of variance was tested using Levene’s test for equality
of variances. Comparisons between experimental manipulations
were made using a two-tailed Students ¢-test (paired or unpaired, and
with or without Welch’s correction as appropriate) and MANOVA for

comparisons between multiple outcome measures, with P< 0.05con-
sidered significant.

Linear, -spline, loess smoothing and natural spline models evaluated
on the previously published time course of normalized social prefer-
ence scores™. Loess smoothing yielded a pseudoinverse at age 41.695
and aknot point of 35 was chosen for both 3-spline and natural spline
models. The natural spline outperformed the B-spline (adjusted R? of
0.1053 versus 0.5554, respectively) with fewer parameters. Residuals
were plotted against fitted values and age to check model assumptions.
Leave one out cross validation was also used to assess model fit. Control
data from all new experiments was used as test data via the predict R
function. RSME and R? values were comparable between the original
model and the new data. Two-way t-tests to compare means of controls
groups against matched or binned time periods was done to confirm fit
to new data. The full model including coefficients for splines, experi-
mentand condition was constructed and tested against reduced models
with the final reduced model being reported. MANOVA analysis was
carried out using multivariate linear models and the ANOVA function.
All statistical comparisons were carried out in the R programming
language and can be found in Supplementary Codes 3 and 4 as well
asinthe repository at https://github.com/genesofeve/DolenPsyche-
delicOpenState.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw data are publicly available on the repository at https://github.
com/genesofeve/DolenPsychedelicOpenState and at the Gene Expres-
sion Omnibus (accession numbers GSE230679 and GSM7231202 to
GSM7231228).
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Extended DataFig.3|Psychedeliceffects are dose, context,and age dependent.
(a) Diagramillustrating experimental time course of i.p. pretreatment in social
CPP. (b,c) Individual (top) and average (bottom) responses indicate that adult
animalsdonotdevelop a preference for the social bedding cue after pretreatment
with ananesthetic dose of i.p. ketamine, suggesting animportant role for
context, since socialinteractions are precluded at this dose (100 mg/kg)
(b,n=18, ¢,;,=-1.75,P=0.0986; ¢,n =20, {15, =—0.89452,P = 0.382). (d) Comparisons
(two-tailed unpaired t-test) reveal no significant difference in normalized (top)
andsubtracted (bottom) social preference for saline versus ketamine pretreated
animals (d, normalized, ¢, = 0.012694, P = 0.990; subtracted, ¢35, =—0.7581,
P=0.454). (e) Normalized social preference of adult animals pretreated with
salineand ketamine plotted against ns-spline model of the developmental time
course of normalized social preference scores. Comparison to the ns-spine
modelrevealed that the magnitude of sSCPPinsaline (P = 0.9976) and ketamine
(P=0.9921) pretreated animals did not deviate significantly from the “closed”
state. (f,g) Individual (top) and average (bottom) responses indicate that adult
animals develop asignificant preference for the social bedding cue after
pretreatmentwith 0.1 mg/kg (b, n=11, ¢,,,=-2.3288, P=0.0421) and 0.2 mg/kg
psilocybin(c,n=12, ¢;;,=-3.5499, P =0.0046). (h) Comparisons (two-tailed
unpaired t-test) reveal no significant differencein normalized (top) and
subtracted (bottom) social preference for pretreatment with 0.1 mg/kg versus
0.2 mg/kg psilocybin (h, normalized, ¢,,=-1.6504, P= 0.115; subtracted,

ton=-1.7097,P=0.109). (i) Normalized social preference of adult animals
pretreated with 0.1 mg/kg and 0.2 mg/kg psilocybin plotted against ns-spline
model of the developmental time course of normalized social preference
scores. Comparisonto the ns-spine model revealed that the magnitude of sCPP
inanimals pretreated with 0.1 mg/kg psilocybin (P=0.7938) did not deviate
significantly fromthe “closed” state, while animals pretreated with 0.2 mg/kg
psilocybin (P =0.04646) demonstrated asignificant mean shiftin range of the
“open”state. (j, k) Individual (top) and average (bottom) responses indicate
that P42 animals develop asignificant preference for the social bedding cue
after pretreatment with saline (j, n=22, ¢,,,=-5.1882,P<0.001) and MDMA
(k,n=22,¢,)=-5.5432,P <0.001) (two-tailed paired t-test). (d), Comparisons
(two-tailed unpaired t-test) reveal no significant difference in normalized (top)
and subtracted (bottom) social preference for pretreatment with MDMA

(10 mg/kg) versussaline (I, normalized, ¢,,) = 0.6877, P= 0.495; subtracted,
tuy=0.29151,P=0.772).(m) Normalized social preference of P42 animals
pretreated with salineand MDMA plotted against ns-spline model of the
developmental time course of normalized social preference scores. Comparison
tothe ns-spine model revealed that the magnitude of sSCPPin animals pretreated
with10 mg/kg MDMA (P = 0.1831) or saline (P =.7721) did not deviate significantly
fromthe “open” state; comparisons tosplineregression model were considered
notsignificantP > 0.1. Dataare presented asmean +s.e.m.*P <0.05;n.s.,
comparisons notsignificant (P > 0.05). n=Xbiologicallyindependent animals.
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incocaine CPP. (b,c) Individual (top) and average (bottom) time spentinthe (20 mg/kg) following 3 days of saline pretreatment. Administration of MDMA
cocaine paired contextindicates that mice pretreated with saline (b,n=8, after day12 did not significantly alter the locomotor response toamphetamine
t;=-4.5102,P=0.0028)and LSD (c,n =8, t;)=-4.8353,P=0.0019) both develop ~ (dayl2versusday16,n=12,¢,,=2.2171, P=0.443). Dataare presented as mean
significantly increased preference for the cocaine context after conditioning +s.e.m.*P<0.05;n.s.,comparisons not significant (P> 0.05).n=Xbiologically
with 5 mg/kg cocaine (two-tailed paired t-test). (d) Comparisons reveal no independentanimals.

difference innormalized cocaine preference (top, ¢4, =-1.0051, P=0.332) and
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Extended DataFig. 5| Duration of the openstateinduced by psychedelics is
variablebut notextended by increasing dose. (a,f k) Diagramsillustrating
experimental time course of i.p. pretreatmentin social CPP. (b,c) Individual
(top) and average (bottom) responses indicate that adult animals do not
develop asignificant preference for the social bedding cue 4 days after
pretreatmentwithsaline (b,n=38,¢;,=0.38628,P=0.711) and ketamine (3 mg/kg)
(c,n=7,t,=-2.2235,P=0.068) (two-tailed paired t-test). (d) Comparisons
(two-tailed unpaired t-test) reveal no significant difference in normalized (top)
andsubtracted (bottom) social preference for 4 days after pretreatment with
ketamine versus saline (d, normalized, ¢;=t=-1.2142, P= 0.258; subtracted,
tu3=-1.6823,P=0.123). (¢) Comparison to the ns-spine model revealed that the
magnitude of sSCPP did not deviate significantly from the “closed” state four
days aftersaline (P =0.508) and ketamine (P = 0.4418). (g,h) Individual (top)
and average (bottom) responses indicate the reinstatement of social CPPis
present three weeks after pretreatment with ibogaine (g,40 mg/kg, n =20,
tu9)=-3.5381,P=0.0022), but absent with MDMA (h,10 mg/kg,n=16,
tys=—0.11467, P=0.968) (two-tailed paired t-test). (i) Comparisons (two-tailed
unpaired t-test) reveal asignificant differencein normalized (top, ¢34 =2.615,
P=0.0170) and subtracted (bottom, t(34) =2.4756,P = 0.0204) social

preference 3 weeks after pretreatment with ibogaine versus MDMA.
Comparisonto the ns-spine model revealed that the magnitude of sCPP
demonstrated asignificant mean shiftinrange of the “open” state for 3 weeks
afteribogaine (P = 0.01158), while the magnitude did not deviate significantly
fromthe “closed” state for 3 weeks after MDMA (P = 0.9152). (k,I) Individual
(top) and average (bottom) responsesindicate that the reinstatement of social
CPPispresent48 hafter pretreatment with LSD (k, n =6, t5,=-3.0103,
P=0.0297),butabsent 4 weeks after (I, n =12, ¢,;,=-1.1834, P=0.262).

(m) Comparisons reveal non-significant difference in normalized (top) and
subtracted (bottom) social preference for 48 h versus 4 weeks after pretreatment
withLSD (m, normalized, ¢, =1.2786, P = 0.2314; subtracted, ¢, =1.4209,
P=0.1792) (two-tailed unpaired t-test). (n) Comparison to the ns-spine model
revealed that the magnitude of SCPP demonstrated asignificant deviation to
the “closed” state at 48 h (P =.0915), while the magnitude did not deviate
significantly fromthe “closed” state at 4 weeks (P = 0.3168); comparisons to
splineregression model were considered not significant P> 0.1. Dataare
presented as mean t£s.e.m.*P <0.05; n.s.,comparisons not significant
(P>0.05).n=Xbiologicallyindependent animals.
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Extended DataFig. 6 | Psychedelics donotinduce hyperplasticity inthe
NAcormPFC. (a) Time course of treatment and electrophysiology protocol.
(b) Representative mEPSC traces recorded from MSNs in the NAc of brain slices
collected from mice pretreated 48 previous with saline (n = 6),10 mg/kg MDMA
(n=6),1ug/kgLSD (n=4),3 mg/kgketamine (n=4),and 40 mg/kgibogaine
(n=4).(c) Average frequency of mEPSCs and (d-g) cumulative probabilities of
inter eventintervals recorded from MSNs. (h) Average and (i-1) cumulative
probability distributions of amplitudes recorded from MSNs. One-way analysis
ofvariancerevealed nosignificant effect of treatment onfrequency (Fs ,;,=1.05,
P =0.41) oramplitude (F(s ,;,=0.16,P = 0.97). (m) Time course of treatment and
electrophysiology protocol for mEPSCsrecorded inlayer 5 pyramidal neurons
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inthe mPFC of brainslices collected from mice pretreated 48 previous with
saline (n=5),10 mg/kg MDMA (n=4),11g/kgLSD (n = 6). (n) Average frequency
of mEPSCs and (o-p) cumulative probabilities of inter eventintervals recorded
fromlayer 5 pyramidal neurons. (q) Average and (r-s) cumulative probability
distributions of amplitudes recorded from layer 5 pyramidal neurons. One-way
analysis of variance revealed no significant effect of treatment on frequency
(Fp12=0.34,P=0.72) oramplitude (F, ;= 0.26, P= 0.78). All cells have been
recordedinslices of adult animals at P98. Dataare presented as mean £s.e.m.
*P <0.05, n.s.comparisons notsignificant P> 0.05.n = Xbiologically
independentcells.
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Extended DataFig.7|See next page for caption.
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Extended DataFig.7|Serotonin2Areceptors are not universally required
for critical period reopening. (a) Diagramillustrating experimental time
courseof i.p. pretreatmentin social CPP. (b,c,f,g,j k,n,0) Individual (top) and
average (bottom) responses of P98 animals indicate that ketanserin (HTR-A)
abolished the reopening of social reward learning critical period by LSD
(b,LSD,n=9animals, tg=-4.938,P=0.001;¢,LSD+HTR-A, n=9 animals,
t=0.210,P=0.839), and psilocybin (f, psilocybin n =16 animals, t ;)= -4.494,
P<0.001; g, psilocybin+HTR-A, n =17 animals, ¢ =-0.515, P = 0.613), but not
by MDMA (j, MDMA, n =18 animals, t;;,=-2.916,P = 0.01;k, MDMA + HTR-A,
n=17animals, t,=-6.737,P <0.001) and ketamine (n, ketamine n =16 animals,
tys=—4.517,P<0.001; 0, ketamine + HTR-A, n =16 animals, t;5,=-2.952,

P <0.001) (two tailed paired t-test). (d,h,I,p) Comparisons of the normalized
(top) and subtracted (bottom) social preference between treatment groups
reveal adecrease following LSD + HTR-A versus LSD alone (d, normalized,
tue=2.427,P=0.027;subtracted, t,,=2.377,P=0.030),adecrease following
psilocybin+HTR-A vs psilocybin alone (h, normalized, t;,,=2.114, P = 0.043;
subtracted, t3;,=2.475,P=0.019), but no difference between MDMA and MDMA

+HTR-Apretreatmentgroups (I, normalized, t 35 =-0.971, P=0.339; subtracted,
t33=-1.282,P=0.209), nor ketamine and ketamine + HTR-A pretreatment
groups (p, normalized, t,=0.013,P = 0.990; subtracted, t35,=0.535,P=0.597)
(two tailed unpaired t-test). (e,i,m,q) Normalized social preference in mice
pretreated with LSD (e), psilocybin (i), MDMA (m) and ketamine (q) in
thepresenceortheabsence of HTR-A plotted against ns-spline model of the
developmental time course of normalized social preference scores. Comparison
to the ns-spine model revealed that the magnitude of sCPP did not deviate
significantly fromthe “closed” state for LSD + HTR-A (P =0.728), and psilocybin +
HTR-A (P = 0.987), while the magnitude demonstrated a significant mean shift
inrange of the “open” state for LSD (P = 2.52e-09), psilocybin (P =1.43e-06),
MDMA inpresence (P =1.77e-05) or absence of HTR-A (P = 0.22e-4), and
ketaminein presence (P =0.002619) or absence of HTR-A (P =0.000996);
comparisonsto splineregression model were considered not significant
P>0.1.Dataare presented asmean+s.e.m.*P <0.05, n.s.comparisons not
significant P > 0.05. n= X biologically independent animals.
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Extended DataFig. 8| B-arrestin 2 KO mice exhibit normal maturational
profile of social rewardlearning. (a) Diagram illustrating experimental time
course of social CPP. (b-e) Social CPPinjuvenile (P42) and adult (P98) B-arrestin
2 KO mice. (b,c) Individual (top) and average (bottom) responses of adult
animalsindicate that onlyjuvenile -arrestin 2KO mice develop a preference
for the social bedding cue (P42 (n =17 animals, t,,,=-4.392,P < 0.001), P98

(n=17 animals, t,,,=—0.922,P =0.370) (two tailed paired t-test)). (d) Comparisons
reveal adifference in normalized (top, ts;=2.110, P = 0.043) and subtracted
(bottom, t35=2.120, P = 0.042) social preference at P42 versus P98 mice (two

Age (postnatal day)

tailed unpaired t-test). (e) Normalized social preference of B-arrestin 2 KO mice
atP42and P98 plotted against ns-spline model of the developmental time
course of normalized social preference scores. Comparison to the ns-spine
modelrevealed that the magnitude of sSCPP did not deviate significantly from
the “open”state at P42 (P =0.840) and from the “closed” state at P98
(P=0.760); comparisons to spline regression model were considered not
significant P> 0.1. Dataare presented as mean +s.e.m.*P <0.05,n.s.
comparisons notsignificant P> 0.05.n=Xbiologically independent animals.
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Extended DataFig.9|See next page for caption.




Extended DataFig.9|B-arrestin2isnot universally required for critical
period reopening. (a) Diagramillustrating experimental time course of i.p.
pretreatmentinsocial CPP. (b,c,f,g,j k,n,0) Individual (top) and average
(bottom) responses of P98 animals indicate that LSD (b, WT, n =21animals,
to0=-3.992,P <0.001; ¢, B-arrestin2KO, n =17 animals, t,,, = -1.105, P = 0.286)
and MDMA (f, WT, n=15animals, t,,)=-3.994,P=0.001; g, B-arrestin 2KO,
n=18animals, t;;,=-0.759, P = 0.458) don’treopen thesocial reward learning
critical periodin B-arrestin 2 KO mice whereas ketamine (j, WT, n =10 animals,
t=-3.448,P=0.007;k, B-arrestin 2KO, n=12 animals, t;;,=-2.903, P=0.014)
andibogaine (n, WT,n=16 animals, t5,=-3.135,P = 0.007; o, B-arrestin 2KO,
n=18animals, t;;,=-2.655,P=0.016) doreopen thecritical period bothin WT
andin B-arrestin 2 KO mice (two tailed paired t-test). (d,h,l,p) Comparisons of
the normalized (top) and subtracted (bottom) social preference in WT and
B-arrestin 2 KO micereveal a difference in the magnitude of sCPP after
pretreatment with LSD (d, normalized, t;,=2.248, P=0.031; subtracted,

e =2.139,P=0.039), and MDMA (h, normalized, t5,=2.227,P = 0.033;

subtracted, t;;,=2.112, P = 0.043), but no difference after ketamine (I, normalized
(tp0=—0.545,P =0.591, subtracted, t,o)=—0.676,P =0.507) and ibogaine
(p,normalized, t;;,=0.790, P = 0.435; subtracted, t35,=0.462,P = 0.647)

(two tailed unpaired t-test). (e,i,m,q) Normalized social preferencein WT and
B-arrestin 2 KO mice pretreated with LSD (e), MDMA (i), ketamine (1), and
ibogaine (q) plotted against ns-spline model of the developmental time course
of normalized social preference scores of male mice. Comparison to the
ns-spine model revealed that the magnitude of sCPP did not deviate significantly
fromthe “closed” statein B-arrestin 2 KO mice for LSD (P =0.357) and MDMA

(P =0.490), while the magnitude demonstrated asignificant mean shiftin
range of the “open” state for WT pretreated with LSD (WT, P=.00315), or MDMA
(WT, P=.0140), and for WT and KO pretreated with ketamine (WT,P=.00911;
B-arrestin 2KO, P =.0198) or ibogaine (WT, P =.0249; B-arrestin 2KO, P =.0954);
comparisonsto spline regression model were considered not significant P > 0.1.
Dataare presented as mean s.e.m.*P <0.05, n.s. comparisons not significant
P>0.05.n=Xbiologicallyindependent animals.
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Extended DataFig.10 | Comparison of gene expression for saline versus all drugincluding cocainevs. the saline control. (b-i) Ratio of expression values to
psychoactive drug (including cocaine) treatment groups. (a) Heatmap of average saline baseline for top scoring genes from this analysis related to
normalized RNA expression values from the microdissected NAc for genes increased synaptic transmission.

significantly differentially expressed between treatment with any psychoactive
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Software and code

Policy information about availability of computer code

Data collection  For behavioral experiments, the position of the mouse was monitored using a commercially available software interface (Activity Monitor,
Med Associates).
Data analysis All statistical comparisons were carried out in either GraphPad Prism 9 or the R programing language.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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All data obtained in this study are available from the corresponding author upon reasonable request. RNA sequencing raw data will be made publicly available at
GEO XXX. Code to reproduce the RNA-Seq analysis and associated figures is provided in a supplementary file. All data and analysis code will be available at the
following repository: https://github.com/genesofeve/DolenPsychedelicOpenState.
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Sample size Sample size was determined based on our previous findings and the published literature

Data exclusions  Mice were excluded if they exhibited a pre-conditioning preference score > 1.5 or < 0.5. These criteria were
established prior to testing.

Replication In order to maximize data robustness, care was taken to use automated analysis protocols and validate all assays for inter-rater reliability.

Randomization  To assure unbiased design for behavioral experiments, chamber assignments were counterbalanced for side and place cues.Group allocations
were randomized during data collection.

Blinding Experimenters were blind to the condition when subjective criteria were used as a component of data analysis, and control and test
conditions were interleaved.
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6J mice were used for all experiments
Wild animals Study did not involve wild animals
Field-collected samples  Study did not involve field-collected samples

Ethics oversight All procedures complied with the animal care standards set forth by the National Institutes of Health and were in accordance with
protocols approved by the Johns Hopkins University Animal Care and Use Committee.
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